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Abstract-A constitutive model for concrete. built within the framework of rate-independent theory
of plasticity. is presented. The model invokes the concept of a failure locus which is introduced a
priori as a path-independent criterion. The shape of the deviatoric section of this locus is influenced
by the value of the confining pressure. The yield surface is assumed in a similar functional form to
that of the failure locus. and its evolution is described in terms of a suitably chosen damage
parameter. The plastic flow is governed by a non-associated flow rule. The material characteristics
are strongly inl1uenced by the actual confining pressure and display a smooth transition from a
ductile to brittle behaviour. The procedure for identification of material parameters is ellplained in
detail and the effectiveness of the concept is veri lied for a number of loading paths. The results of
numerical simulations are compared with the experimental data available in the literature.

I. INTRODUCTION

A realistic solution to a structural problem involving plain or reinforced concrete depends,
to a large extent, on the choice of an appropriate constitutive law. Consequently, in recent
years considerable research has been focused on modelling of mechanical behaviour of
concrete. The existing formulations have borrowed v.trious theoretical frameworks from
continuum mechanics: non-linear e1asticity[I ..3], rate-independent plasticity[4..6], endo
chronic theory[7, HI, as well as plastic-fracturing theory[9, 10].

The mechanical response of concrete is very complicated and it seems unlikely that
any phenomenological approach will ever be able to embrace all possible variations in
material characteristics. The objective of this paper is to propose a relatively simple rate
independent theory which adequately reflects certain typical trends in concrete behaviour.
These include: a progressive transition from compaction to dilatancy, sensitivity of material
characteristics to confining pressure including a continuous transition in failure mechanisms
from ductile to brittle. The concept is built within the framework of the theory of e1asto
plasticity. The deformation process is governed by a non-associated flow rule and involves
a progressive evolution of the yield surface which is described in terms of an appropriate
hardening/softening parameter.

In Section 2 basic assumptions incorporated in the formulation are outlined. The
mathematical details concerning the form of failure, yield and plastic potential loci are
provided, followed by a discussion of strain hardening/softening characteristics. The section
is concluded by presenting the appropriate constitutive equations. Section 3 is concerned
with identification of material parameters involved in the formulation. Finally, in Section
4, an extensive discussion on numerical elTectiveness is provided. The performance of the
model is verified for various loading histories imposed on dilTerent types of concrete.

2. A CONSTITUTIVE MODEL FOR CONCRETE

In order to provide a general mathematical formulation the following stress invariants
arc introduced:
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Fig. I. Failure surface in (a) principal stress space; (b) meridional pl,lne; (c) dcvialllric plane (1[
plane).

[n the equations aoovc .1'" = a"-I/3<),,au denotes the stress deviator. whereas (/ represents
the angle measure or the third stress invariant J, = l/3s"s,.s.,.

The proposed description invokes the concept of a path-independent failure (limit)
locus. F(a,,) = 0 whil'h is introduced a priori. The progressive deformation of the material
is descrioed in terms or evolution of the family of yield surfaces. /(a".~) = O. where ~ is a
suitably defined damage parameter. The instantaneous direction of plastic flow is deter
mined by a non-associated flow rule. which involves the existence of the family of plastic
potential surfaces defined in a parametric form 'I'(ai /) = const. The material characteristics
arc largely affected by the value or the confining pressure. The formulation assumes a
smooth transition from a ductile (stable) to a orittle (unstable) response. This is enforced
oy selecting an appropriate form of strain hardening/softening function. In what follows.
major assumptions embodied in the proposed concept are outlined together with relevant
rna thematic'll details.

2.1. Failure (or limit) 10ettS

Failure criterion defines maximum strength ofconcrete under any possible combination
of stresses. It is assumed that this criterion is not influenced by the deformation history and
can be postulated a priori. Rased on existing experimental evidence[II]. the following form
of the failure locus is proposed:

(2)

where £II. a!. and u, are dimensionless material constants. whereas h represents uniaxial
compressive strength of concrete.

[n the principal stress space eqn (2) represents an irregular cone with smooth curved
meridians and a non-circular convex cross-section in the deviatoric (n) plane (Fig. I). The
shape of the n-plane sections (defined through the function g(O» is assumed to be strongly
influenced by the value of the confining pressure. The function g(O) is selected in the form
proposed in Ref. [12]

(j(1 +a)-j(l-a»K
q(O) =--~-~~~~-----~-~----_._- a = const. (a --+ I) (3)
. Kj(1 +a)-j(l-a)+(I-K)j(l-a sin 30)

which satisfies g(n/6) = I and g( -n/6) = K and for a = 0.999 guarantees convexity for
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K ~ 0.565 (see Ref. [12]). Other suitable representations of g(O) are discussed in Refs
[12,13]. In eqn (3) K = at/ac , where ac and at represent the maximum values of a, for
1= const.. in compression (0 = n:/6) and extension (0 = - n:6) domains, respectively. In the
present study K = K(I) is assumed and the following simple function describing variation of
K is chosen

(4)

where K" and K j are material constants. It should be noted that according to eqns (3) and
(4) the shape of the n:-plane section changes from a curvilinear triangle for low hydrostatic
pressures to nearly circular at high pressures (1-- 00 implies K -- 1 in eqn (4».

For a further discussion it is convenient to write eqn (2) in the following parametric
form:

where

F = a-g(O)ac = 0 (5)

2.2. ridd loci
In order to define the family of yield loci a similar functional form as that in eqn (5)

is employed. i.e.

f = IT-IJ(~)g((})lTc = 0 (6)

where {J(~) represents a hardening/softening function and ~ is a suitably chosen damage
parameter. In a ductile regime (at relatively high confining pressures). in which material
characteristics are stable. the function IJ(e) is selected in the hyperbolic form

If(e) = A~B~

where A and B represent material constants and ~ is defined by

In egn (8) I. dEl' is a measure of plastic distortions

whereas IT> = const. is a factor defined through a parametric equation

(7)

(8)

(9)

Incorporation of IT> in eqn (8) is motivated by the experimental evidence. The proposed
functional form eqn (9). allows typical trends in the variation of material characteristics
with both I and () to be simulated. as discussed later in this paper.

It should be noted that, according to eqn (7), {J(~) -- I as ~ -- 00 (since B ~ t, eqn
(30) ~ in the next section), which implies that the yield surface asymptotically approaches

SAS H;1-0
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Fig. 2. Plastic potential surface in meridional plane.

the 1~lilure surface. On the other hand, (I(~) = 0 for ~ = 0, which indicates that. in the
proposed approach. the size of the initial yield surl~lcc is reduced to zero.

2.3. Plastic potelltial sur/ctc('
Experimental evidence suggests that in a ductile regime a smooth transition from

compaction to dilatancy takes place prior to I~tiltlre. ;\ similar trend is abo ooserved in
certain geological materials (e.g. c.knsc sand) and can oc adequately modelled oyassuming
a non-associated flow rule and defining an appropriate form of the plastic potential[14J.
Recognizing this analogy. thc plastic potential function is adoptl:d in a similar form to that
proposed in Rd". [141. i.c.

'II = a+Ifc.lJ(IJ)fln (!) = ()
III

(10)

when: f = a,,/ + I and a" is a constant whidl ddines the location of the apex of the plastic
potential surfal.:e in the tensile domain. Moreover, the paramcler 'I, represents the value
of '1 = ii/(g«()!) at which the transition from compaction to dilatancy oC\.'lIrS (at 'I =
'I" dl:f. = 0). It is assumed that such transition takes place along the locus

l = ii - xg(O)a, = 0 (II )

in which :x is a material \.'onstant.
Figure 2 shows the meridional section of the family of plastic potential surfaces. In

order to satisfy the condition of irreversibility following from the second law of thermo
dynamics, i.e. all dl:~, ;;:: (). all surl~tces must be convex with respect to the origin of the stress
space. To comply with the laller requirement an appropriate evolution law for the set of
'P = () defined by eqn (10) must be provided. Denote by '1" the value 01"11, at 1= () and
a" = (I,

(12)

and let the corresponding plastic potential surface. eqn (10). be 'Po = 0 (Fig. 2). It is
assumed that for '1, < 'in all subsequent plastic potential surfaces are obtained by an
isotropic expansion of 'fin = 0 under all = a~ = const. If the stress point falls inside the
domain enclosed by 'Po = 0 the family of'P = 0 satisfies the constraints '1< = 'lo. an < a,.
The laller assumption implies that inside 'Pn = 0 all subsequent loci are reduced in size
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and the apex gradually migrates towards the origin. 0 ~ ao ~ a3' Mathematical details
concerned with identification of the current plastic potential are provided in Appendix A.

2.4. Strain softening response
The mechanical response of concrete is largely influenced by the value of confining

pressure. At relatively high pressures. a pattern of numerous microcracks develops and
material characteristics display a stable nature. As the confining pressure decreases. a
gradual transition from ductile to brittle behaviour takes place. In the brittle regime. distinct
macrocracks form. generating an unstable material response.

In the present concept the transition from a stable (ductile) to unstable (brittle)
response is modelled by an appropriate generalization of the hardening function (eqn (7».
The form of this function is suitably selected to reflect a gradual change in material
characteristics from strain hardening (for high confining pressures) to strain softening with
progressively increasing rate.

Assume the following generalization of the function fJ(~) specified by eqn (7):

( 13a)

where

and angular hrackets < ) arc dclined according to

( 130)

{
o

<x) = x

if x ~ ()

if x> O.
( 14)

In e4ns (13) er represents the value of ecorresponding to thc maximum valuc of If = IJr.
(fUJI is evaluated at {f = {fr and (1/j~) I denotes a normalized value of confining pressure
at which a transition from ductile to hrittle behaviour t'lkes place. Moreover. y. JI and II
represent material constants and (P, defines the residual strength of the material.

According to eqn (l3a). the inception of strain softening takes place at ~ = er. In this
paper. the transition to unstable behaviour has been described in terms of a path-inde
pendent criterion F --> () under 1< fr. In general. however, the value of ~fcan be determined
more rigorously using an appropriate strain localization criterion derived from con
siderations of stability of the constitutive relation (bifurcation problem, see e.g. Ref. [t 5)).
The latter approach is currently under investigation.

The constant C. specified by eqn (l3b), controls the ratc of strain softening in the
post-bifurcation mode. After inception of strain localization. the sample is no longer
homogeneous and to model precisely its response one should refer to a boundary value
problem. The approach advocated here is based on the concept ofan equivalent continuum.
similar to that introduced in Ref. [16J. Strain softening is viewed as a local phenomenon
occurring in a "smeared" sense at a material point. Equation (13b) incorporates the "size
dfect" by employing constant ($, which associates the ratc of softening with the relative
volume of the s'lmple. selected here as a characteristic dimension. Specification of c$, is
discussed in detail in Appendix B.

It can be shown that. according to eqns (13). for y > 1.0. the following conditions are
satisfied:
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(15)

It is also evident that for C = 0 (/ ~ I r) egns (13) reduce to eqn (7) (strain hardening
response). whereas 1-+ -ad~ implies C -+ x. which leads to a perfectly brittle response.
Hence. the function defined in eqns (13) satisfies all mathematical requirements for a
continuous change of material characteristics from ductile to brittle.

In the strain softening range. the deformation process is again described in terms of a
non-associated flow ruk ""ith the plastic potential specified by eqn (10). The zero dilatancy
locus. as defined in the stable regime by eqn (II). is assumed to undergo gradual contraction
with a decreasing value of fJ

I = Ii - fJxg(O)iJ, = O. ( 16)

The above functional form enables the modelling of progressive dilation of the material
during the unstable phase.

Finally. in the brittle regime. the non-uniform deformation mode consists of either
sliding along asperities or. in certain cin:umstances. an abrupt fracture. i.e. opening of a
tensile microcrack. The former mechanism is completely described by egns (13) and (15).
whereas the latter one involves an instantaneous reduction of all stress components to zero.
The fracture domain (OAR) is shown schematil.:ally in Fig. I(b). If the stress path. after
reaching the failure surt:lce. penetrates into this domain. an abrupt fracturc takes place. If.
on the other hand. the residual strength envelope (as implkitly defined by IF,) is reached
Ilrst. an unlimited plastic now commences. At this time. the extent of the fracture domain
cannot be precisely defined due to lack of adequate experimental data. One can speculate
only that this domain is confined to a vidnity of the tensile branch of the hydrostatic axis.

2.5. Formulatioll of collstilUtil'(' ('quatiolls
Assuming additivity postulate between the clastic and plastic strain increments. a

generalized Hook's law can be written as

( 17)

where D~ikI represents the clastic constitutive matrix. During an active loading process, the
consistency condition ttl = 0 has to be satisfied, i.e.

( 18)

in which f(all'~) = 0 is defined aCL'Ording to eqn (6). Introducing the non-associated flow
rule

the dilTerenti:tl d~, defined by eqn (8) I, can be written in the following form:

(

(~\fI ?\P)I 1 I
d~ = di. dev -.-- dev .,,--- <T>

call ('a,} /

( 19)

(20)

in which dev c'fl/i)al/ represents the deviatoric part of 1~'fI/c7aij' with 'fI(a;) = cons!. given
by eqn (10). Thus, substituting eqn (17) into eqn (18) and utilizing eqn (20) one obtains
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(22)

and HI' represents the plastic hardening/softening modulus. The mathematical details con
cerned with the determination of Hp are provided in Appendix A.

The parameter di. can also be defined in terms of stress increment dO'I/' Introducing
eqn (20) directly into eqn (18) yields

(23)

Finally. substitution of eqn (21) in eqn (17) leads to the constitutive equation in a con
ventional form

(24)

Equation (24) describes an active loading process during which irreversible deformations
arc generated. In the hardening regime. lip > O. such loading histories ure constrained to
stress paths satisfying

f = 0 and (25)

It should be noted that int:quality (25) implies di. > 0 in eqn (23). This ensures (in view of
convexity of the plastic potential. eqn (10». that the energy dissipated during plastic Ilow
is always positive.

In the softening regime Hp < O. the postulate of irreversibility again requires positive
ness of d).. In order to distinguish between loading and clastic unlouding. definition (21)
can be implemented. yidding

f =0 and (26)

as the criterion for an active process. According to this inequality plastic deformations will
occur whenever the stress increment obtained from the clastic solution dO';j = D;jkl dskl• is
directed outside of the yield surface. Criterion (26) is restricted to cases when H. + Hp > O.
i.e. there exists a locally unique response in stress rate for any specified strain rate. It should
be noted that for H.+ Hp ~ O. the deformation process ceases to be locally controllable.
The question of static admissibility of the present formulation is addressed further in
Appendix B.
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Fig. J. Meridional sections of the failure locus (for II = ±rr,6).

J. IDENTII:ICATION 01' MATERIAL PARAMETERS

Thl: proposed constitutive model involves the following matl:rial paramctl:rs:

(a) parametl:rs lIl, lI~, aj, Ko and K b defining the failure envelope (eqn (2»;
(b) paraml:ters II and B, involved in the strain hardl:ning fUI1l;tion (I:qn (7»);
(c) parameters II, t. 1/, associated with thl: strain softening response, as well as

transition pressurl: (I/J~h, and parameters 1$" 1$, (eq ns (13)) ;
(d) dilatancy parameter ~ (eqn (II).

In addition, the elastic properties should also be specified, namely Young's modulus, E,
and Poisson's ratio, v.

Most of the abovl: listed paramcters can be determined a priori based on extensive
experimental data available in the literature. Thus. the ctfectivl: number of parameters
required to identify the model can be signiticantly reduced. The details concerning thl:
idl:ntitication procedure (based on the experimental data from Refs [3, 17-22]) arc sum
marizl:d below.

3.1. Parc/11/{:ters deJining the fai/lire em'elope
Thl: constants ai, (/~, ilJ, Ko and K, are related to the form ofthl: failurl: locus. In order

to identify these parameters two steps were followcd. First. along the compressive meridian
(0 = n;'6). eqn (2) was fittl:d to thl: data provided in Rcfs [3. 19-22] by thc least square
approach. It was assumed that tlJ = 0.3, which corresponds to J; = O.If.:, withlt representing
the uniaxial tensile strength of concrete. Subsequently. the form of the extension branch
(0 = -n/6) was determined. In this case, two failure states were chosen to be satisfied
exactly, namely: uniaxial tension It = O.If.: and a biaxial compression ft><: = -1.16f.:[18].
Thus. throughout the identification process, f.: (i.e. uniaxial compressive strength) was
assumed as the only independent parameter.

The procedure described above resulted in thc following valucs of thc constants:
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a\ == 1.9253. a:: = 0.5635. Q 3 = OJ. Ko = 0.43416. K l = 0.07439. (27)

Figure 3 presents meridional sections of the failure locus in both compressions and extension
domains. The plot is normalized with respect to fc and the proposed analytical form is
compared with the ex.perimental data provided in Refs [3. \9-22].

When selecting the material constants according to eqns (27). the only information
required to identify the form of the failure locus is that concerning the value offc. In the
case when the results of a uniaxial tension test are also available. an exact value of j; can
be used instead of an average approximation It = O.\.t::. Substituting the conditions of
uniaxial tension (0'\ = ft. 0':: = 0', = 0) and biaxial compression (0'1 = 0':: =j~. O'J = 0) in
eqns (4) and (5) leads to the following modifications of parameters a). Ko and K, (eqns (2)
and (4»:

(28)

wherc KI and Kt><; represent the values of K corresponding to uniaxial tension and biaxial
compression. rcspectively

. 2J3 tl::.I;IJ~A - -_.
1- 3 -a, +J(ai+Sa::ItI./J

2J3 alj~/'/~

3 - a I + J(a; +4a1(Jt;!j~ - 2/~/./J)

and .I;" = -1.16/~. according to Rd". [lSI.

(29)

3.2. /lardCllillfj jimetioll parameters
The cxpression ddlning the hardening function. el\n (7). contains two material con

stants A and B. Both p:mlllleters can be identilied by lilting cqn (7) to the tcst data plotted
in the (ii/iiI'. i:1') plane. where ii, = y«()ii~. Using the d:lla from a series of I = const. tests
provided in Ref. [17]. the following values were arrived at:

A = 0.000085: B = 0.95. (30)

The results of the numerical simulations showing the variations of {l- {;P characteristics in
both compression and extension programs. are presented in Figs 4(a) and (b). respectively.

In the subsequent section. predictions of numerous experimental tests for different
types of concrete (fc ranging from \ 5.3 to 62.\ N mm - 1) arc provided. The results allow
one to speculate that the values of A and B as defined by eqns (30) arc not ant.."Cted by the
actual uniaxial strength of the material and C.ln be adopted a priori.

3.3. Dilalancy parameter
This p:lrameter defines the locus along which the transltton from compaction to

dilatancy takes place (eqn (II». Experiment'II evidence indicates (e.g. Refs [17.18]) that in
various types of concrete the maximum volumetric strain is reached at approximately 95%
of the failure stress. Consequently. :x = 0.95 may be assumed in eqn (II).

3.4. Strain softcnin!/ paramcler,v
At the present time. the parameters. H. Jl. Y and UIfJr. eqns (1341) and (l3b).

cannot be determined precisely due to lack of adequate experimental data. The existing
experimental evidence[3.23]. however. supports the proposed conceptual framework. i.e.
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there is a brittle-ductile transition value of conlining pressure (I1J~h, which corresponds
to initiation of the strain softening n:sponse.

Assume i' = 2. which satisfies requirements imposed by eqn (15). Then, the rate of
strain softening is controlkd by 1/ and It. Both these constants can be determined from,
e.g. a uniaxial compression test by matching (trial and crror process) the actual strain
softening characteristic. The parameter 4i" eqns (1341) and (15). defines implicitly the form
of the residual strength envelope. It is recognized that <Pr may depend on the confining
pressure through a parametric equation 4ir = </Jr(l) = const. It seems howcver. that a
sullicient accuracy in numerical predictions may be attained by assuming 4ir =const.. which
implies that the residual strength locus has a similar analytical form to that of the yield
surface. Experimental investigations reported in Refs [24.25] indicate that

lim {/ = 0.2 ... 0.3
~ ~.. -r.

for both uniaxial tension and uniaxial compression tests. Consequently. according to eqn
(15), <Pr = 0.7 ... 0.8 may be assumed in eqn (13a).

Figure 5 shows the variation of material characteristics with the confining pressure as
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Fig. 6. Various loading paths considered in numerical simulations.

predicted by the proposed model. For the strain softening branch. some arbitrary values
of H = 1000 and 1J = 6 (Pr = 0.95) were selected in order to demonstrate the basic trends
in material response. The simulations were completed assuming cPs = I in eqn (l3b). The
influence of this parameter is discussed in detail in Appendix B. The obtained characteristics
are. in a qualitative sense. quite satisfactory and reflect a smooth ductile-brittle transition.

4. NUMERICAL PREDICTIONS

In this section the effectiveness of the proposed model is verified for a number of
loading paths imposed on ditTerent types ofconcrete (I.: ranging from 15.3 to 62.1 N mm - ~).

The loading histories considered arc indicated in Fig. 6 and include:

Path I : hydrostatic compression followed by loading along the compressive meridian
under da > 0, I = const.

Path 2: hydrostatic compression followed by loading into the extension domain under
da > O. I = const.

Path 3: hydrostatic compression followed by uniaxial compression (under
(J 2 = (J J = const.).

Path 4: proportional loading histories: uniaxial tension. uniaxial compression. biaxial
tension and biaxial compression.

The results of numerical simulations arc presented in Figs 7 - 12. The predictions in Figs
7-11 arc restricted to the strain-hardening regime (due to lack of sulTIcient experimental
data). Figures 7 and 8 show simulations for stress paths I and 2. respectively. Some of these
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results have already been referred to in Section 3 for the purpose of identification of material
parameters. Figures 7(<1) and 8(<1) show the normalized deviatoric characteristics, whereas
Figs 7(0) and 8(b) present the corresponding volume change. Numerical predictions arc
compared with the experimental data provided in Ref. [17J. Figure 9 presents the predictions
corresponding to path 3, The behaviour of two ditrerent types of concrete is simulated
(j~ = 15.3 and 62.1 N rnm 2) under dilTerent conlining pressures. A complete stress-strain
history is provided and the results an; compared with those quoted in Ref. [171. Subsequently
Figs 10 and II arc concerned with uniaxial and biaxial programs at zero confining pressures
(paths 4). Figure 10 shmvs the material characteristics as predicted in compression tests,
whereas Fig. II rcli.:rs to extension programs. Experimental data from Rd". [I SJ arc used for
comparison. Finally, Fig. 12 pn;sents the simulation of another uniaxial compression test
(at 1= 0 initially) as performed by Wang e/ al.[261. In this case, a complete deformation
history is tr~lced including the unstable brandt. Prior to failure, the material undergm;s

(J't
.100.00

1

'1500~

~..j

-2S00

I. j U 7 "V...,z
I 4 14 "V"",,1

- PREOICflONS

f,' 15.3 "V.,,,,z
0'1-.0000

I

·)00.00

I
(J 14 N.-mmZ

I • 4 35 "YmmZ
+ 69 N/mmZ

- PREDICTIONS

f,' 62.1 "Ymmz

- " '!It) £} - ._ .z "'11 tJ-"
000t-;---.---_t-.e..--_-.- ...-___ 000+--.......,-::..-'-+--..,---.,....---,--...

1000 000 ·1000 -2000 2000 10.00 0.00 -1000 -2000 -30.00
TENSilE CQMl'I!ESSIVE €' >< 10' IENSllE CQMPRESSIVE
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Fig. 10. Numerical simulations of unia,ial and oi;t,ial colllpression lests[ IXI.

compaction with progressively decreasing rate. During the strain softening phase. a sig
nificant dilation is predicted whidl is in accordance with the existing experimental
evidence[27).

In general. for the cases presented. the agreement between the numerical simulations
and the experimental data is quite satisfactory. For high confining pressures the model
tends to undcrpredict the volumetric strains (Fig. 8(b». To improve the perfllrmance in
that respect the form of plastic potential would have to be altered accordingly. The onserved
disl:n:pancy is not very significant however. to justify further wmplil:ations in the
formulation.

5. CONCLUSIONS

A relatively simple rate-independent plasticity model has been presented for predicting
the bt:haviourofeoncrete under a general three-dimensional stress state. The model captures
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Fig. tl. Numerical simulations of unia,ial and bia~ial e~tensjon tests[ IRI.
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hg. 12. Silllulation of unstahk response under unia.\ial cOlllpression[261.

the most important trends of eOlKn:te behaviour under static loading, e.g. compaction
dilatancy transition, sensitivity of material characteristics to confining pressure, the phen
omenon of a continuous ductile brittle transition. In addition to clastic properties, only
one material constant t: is relJuired (or two constants./~and./; if the latter is available) to
completely define the material response in a hardening regime. A very attractive feature of
the model is the fact that both brittle and ductile behaviour are described within the same
phenomenological framcwork. This is certainly advantageous in the context of future
numerical implementations.

The efrectiveness of thc model has bcen veri/ied for a number of stress paths. The
numerical predictions are, in general.lJuite satisfactory. The model docs not predict plastic
deformations for a hydrostatic path which is assumed to be a neutral one. Recognizing this
limitation. it is believed however. that such a path is unlikely to arise in the contcxt of a
boulllbry value problem.

The applicability of the model is, at the present time. restricted to monotonic loading
histories as no irreversihle deformations arc accounted for during stress reversals. Extension
of this concept to cover the cases of Iluctuating load is currently under investigation.
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APPENDIX A. DETER\1I;\lAT10N OF CONSTITUTIVE TENSOR

A<:<:ording to eqn (24). the material response is govern<:d by an in<:remental <:,'nslilutivc: rdation

in .... hich D~i" is a ('.urth-order h:nsor ddineJ hy

where

,'r ,"I'
II, =,_... n~"", ....

f'(fp~ I'(frl

To specify the form of D:i" the expressions defining the appropriate gradient tensors have to be provided. The
gradient off = 0 can be written in the form
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i'/ ,'f a . <'} i'a i'f ell
--= --- -- ._+ --
{"':(j. tl i"!.(Jr, (....a ("'(111 (....0 (~(fl/ •

From l'qns (I l. dl'tining Ihe strl'ss Invarianls. ant: oblains

-J:

s,' that

eO ,'0 ,'a ('0 eJ,
-=---+---'
t·ur / i'~at'''(Jrl cJ J crJ,/

where

,'/I 3,0)1,. ,'II
;:;a = 2a" cos W' <'J, - 26" cos 30'

Equations (f,), 0) and (-ll. which ddine tht: yidd locus. kad tu

I'! = -11(~)(I(O){~~-(~=~ (1 _~0)(,l.!~~)_=-4-<I sin 30») + _,__. _I }
d Ale \ ,(1 +(1)-.,.1(1-<1) [_ll,(t1"f:)+<I,]

,'f
,'tT I.()

,'I 3<1( I -1\)(1(0)'; cos W

,'/I 2A'(,(I+<I)-J(I-<l)),I(I-asin311)

In orda to ,kline the currl'nl plastic p"lenlial surfacl'. Ihe following numerical procedure eanlle implemenled.

( I) For 'I'" ,., () (or 'I...; 'I,,)
Rekrring 10 Fig. 2. deline lhl' param<:let 'I, as

'I,

whl're, according 10 eqns (:i) and (II)

(I( (1)( <I ,I, f- ,- )

Suhsliluling lhe ahove relallons int" eqn (10) anJ nOling that /" = c(a,f: + '-), an algellraic equation interl1ls of
,- is olliained. Arter solving Ihis equalion, an appropriate value of '1, can be dl'termined which uniqudy delines
Ihe currenl plastic p,'tenlial

(2) '''or'!'",:: ()
The value of param<:ler 'I". e4n (12). can be Jirectly suhstituted in eqn (Ill), Noling thaI /u = ,'au t:, eqn (10)

can he solwd for au. which clHnpletcly delines 'I' = ll,
()nce Ihe current plastic potenlial surl,,,e has been identilieJ. lhe gradient lensor can be evaluated frum

,"I' ,"I' ,'/ ,"I' t"(j ,"I' ,'II
1'(1,/ ,'I i'a

'l

+ ,"':(j ,'(11/ + ,'0 C.... (1,f

in which

Finally. in view of eqns (h) and (7)

,;
- , -"''''/(/1)

1.0

3a( 1-1\)'I({I)tf cos W

21\(,'(1 +a)-,(I-a)),'(I-a sin 311)'

A

(.:1 + 8~)'
(strain hardening regime unly)

which complelely delines the plastic hardening n1l1Juius lip.
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APPENDIX B. SPECIFIC\TlON OF FUNCTION ~. AND CONSIDERATIONS ON STATIC
ADMISSIBILITY

nl

In Section 2. the strain softening phenomenon has been described by employing the concept of an equivalent
continuum. the response of which is sensitive to the actual physical dimensions. The "size effect" has been
incorporated through the constant ~,. eqn (13b), which is supposed to relate the rate of strain softening to the
geometrical aspects. Instead of considering the details of the sample geometry, assume. for simplicity. that its
total volume constitutes a characteristic parameter which affects the softening response. i.e.

~, = </i,({, V) = const.

in which V represents the \'olume of the sample.
The function ~, can be assumed in the following general form

where V, denotes a representative (or standard) volume for which the strain softening characteristics are assumed
to be known. The function 2 l should be selected in such a manner as to reflect a progressive increase in the rate
of strain softening with increasing VI V, ratio. Moreover, for V = V. there must be 2l = 0 which implies ~. = I.
Assume. for example, the following simple representation

'2'(~) = (~)'-1.. V. V,

In the ahove equation ;. represents a constant.
The degrL'C of sensitivity to geometrical aSpL'Cts may vary with the confining pressure. This is accounted for

hy introducing the function 2,({). In general, this function will assume the value fwm the interval 0 ~ iX, ~ I.
2, = 0 Implies that the strain softening characteristics remain unaffected by the volume of the s:mlple. whereas
2, = I expresses maximum sensitivity. As an example. the following trigonometric fUI1l:til,n may he considered:

. [a, +({IfJ,]
2,(1) = SIO·--···.· It.

",(IifJ,

Here, 1- - a ,t: and 1 - 1r yields x, - 0, whereas max x, '" I. Figure III shows the strain softening characteristics
for dilferent VI V, ratios as predicted by the above specified functions.

Incorporation of,p, in eqn (13b), requires further investigation concerning the static admissibility of the a-c
characteristics. During the strain softening phase a progressive decrease in a must be accompanied by the
corresponding increase in the value of,:, otherwise an abrupt loss of equilibrium will take place. In mathematical
terms, the following conditions must be satisfied:

where the superscripts refer 10 the clastic and plastic part of dE, respectively.
According to eqns (X)

P
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Fig. BI. Influence of (P, on the rate of strain softening (2, = I).
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so that

For the elastic part

1 af
df." = -,--M = --dP

J(2)G J(2)G

where G represents the elastic shear modulus.
Combining the e~pressions for dt" and df.". one obtains

(
af <I> )--+-- d >0

../(2)G fI'W P .

In view of dP < O. the above inequality reduces to

af <I>
J(2)G + fi'(~) < 0

or. after a simple rearrangement

dtl (~
'd'> -J(2)G-:.

" G f

For an arbitrary I, the function dtl/d~ reaches its minimum when

d'tl
J~j = 0,

In order to find this minimum let us simplify the function tl(~) in eqn (13a) to

After differentiation with respect to ~. one obtains

which leads to

so that

min (~~) = -cpJI,J(2C) e' ".

Substituting lhe above eljuation in the criterion for sta'tic admissibility. one obtains

Finally. in view of eljn (I Jb). the following inequality is arrived at:

which represents a constraint imposed on the selection of fI in eqn (Db).


